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Abstract

In certain industrial processes, such as undersea cable laying, a very long rod subject to remote axial tension and

torque can form a self-contacting loop. An increase in remote tension under a ®xed torque can draw the loop down
in size until it becomes very small and then pulls apart. The very large local strains of the small loop can
permanently damage the rod (e.g. through plastic deformation). In the cable laying industry, this process is known

as hockling.
This study uses the theory of linear elastic rods which can undergo shear and extensional deformations in

addition to bending and twisting curvatures in order to solve approximately for the shape, force, and moments that
occur during hockling. A new closed-form solution to the rod theory equations is developed and used to predict (at

least approximately) the loops sizes and remote tensions that occur at the formation and pull apart of the
contacting loop. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A variety of industrial processes over a range of length scales involve the manipulation of elastic rod
structures that are subject to remote applied tension and twist (e.g. textile yarn production and under
sea cable laying). During the handling of these rods a loop can `pop' into the shape for a variety of
reasons such as material or loading nonuniformities. Attempts to remove the loop by increasing the
tension can destroy a rod through the process of hockling which is described below.

Fig. 1 shows an in®nitely long rod with a circular cross section of radius a and made from a linear
elastic material with Young's modulus E and Poisson's ratio n. The rod is initially straight and subject
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to the remote dimensionless tension T1 and torque Q1 (de®ned according to the scheme described in
Eq. (5)). Greenhill (1883) showed that the rod ®rst buckles when the tension is reduced to the critical
value,

T1 � Q2
1
4
:

As the remote applied tension T1 increases from this level under ®xed applied Q1, the solution
quickly localises into a form similar to a solitary wave solution (Coyne, 1990), see Fig. 1(a). For
T1 > Q2

1=2, the rod shows the appearance of a loop when viewed from the side, Fig. 1(b). At ®rst, the
loop is noncontacting, that is the sides of rod surface do not rub together. However, as T1 increases to
a critical value T1=Tc, a contacting loop is formed when the sides touch each other at some distance
along the axis running through the centre of the rod [Fig. 1(c)]. As T1 is further increased, the
contacting loop is drawn down in size [Fig. 1(d)] until, at a second critical tension T1=Tl, the surfaces
of the rod pull away (i.e. lift o�) from each other to produce a very small loop [Fig. 1(e)]. The small
radius of curvature of this second noncontacting loop produces large local strains which can
permanently deform (hockle) a metal or ®bre-optic cable in this region.

The theory of elastic rods is used to describe the process of hockling shown in Fig. 1. This theory has
a long history, much of which is summarised in Chapter 18 in the treatise by Love (1927) and in the
recent volume by Antman (1995). There have been a number of analyses of localised rod shapes with
the context of undersea cable laying. The most pertinent theoretical work is that of Coyne (1990), who
®rst obtained a closed form solution for the localised mode in an in®nitely long inextensible and

Fig. 1. Side and plan views of the rod centre line for: (a) The Coyne solution in the loading region
Q2
1
4 RT1RQ2

1
2 . (b) The loading

region
Q2
1
2 RT1RTc prior to side contact. (c) The formation of the contacting loop at T1=Tc. (d) The drawing down of the con-

tacting loop in the loading region Tc R T1R Tl. (e) The pull apart of the contacting loop at the critical tension T1=Tl.
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unshearable rod and also estimated the tension T1 and torque Q1 combinations associated with the
formation of contacting solutions. Dwivedi et al. (1990) have used a simple planar bending model to
treat the case of no remote applied twisting moment. Champneys and Thompson (1996) and Thompson
and Champneys (1996) have studied localised mode shapes in inextensible and unshearable rods with
linear and nonlinear constitutive laws along with nonisotropic cross-sectional properties, but they have
not considered the development of contacting solutions.

There have been several recent applications of the theory beams and rods that undergo extensional
and shear deformations in addition to bending and twist. Libai (1992) and Goto et al. (1990) have
incoporated these e�ects into the planar equations for the large kinematic deformation of the bent beam
and have studied various planar problems. Champneys et al. (1997) have also considered the
development of localised modes in linear elastic rods which undergo shear and extension in addition to
bending and twist. Their formulation has also included the e�ects of: gravity, nonisotropic cross-
sectional properties; and initial curvature. Importantly, the neglect of these three e�ects produces a
system of equations which is completely integrable so that no spatially chaotic solutions, such as those
described by Mielke and Holmes (1988), are observed.

This study applies a rod theory which incorporates shear and extensible deformations as well as
bending and twisting curvatures to the analysis of the hockling problem shown in Fig. 1 in order to ®nd
the localised shape, forces, and moments within the rod for various values of T1 and Q1. The study is
organised as follows. In Section 2, the mathematical formulation of the problem is described in terms of
both a global vector system and a material-based vector system that is ®xed to the central axis of the
rod. In Section 3, the equations governing the forces and moments within the rod are integrated to
obtain a new closed form solution for this formulation. (This solution reduces to the Coyne (1990)
solution in the limit of an unshearable and inextensible rod.) In Section 4, this new solution is used to
determine the T1 and Q1 combinations associated with the formation of the contacting and lift-o�
solutions shown in Fig. 1. The prediction of the loop shape during the drawing down process shown in
Fig. 1(c) is beyond the scope of this study. The results are compared with predictions made by the
simpler inextensible and unshearable beam model, and the inclusion of shear and extension
deformations is seen to alter signi®cantly the small loop results. Section 5 closes this study with some
concluding remarks on the applicability of the results.

2. Mathematical formulation

When an elastic structure has an elongated shape in one direction it is often modelled with a subset of
the general equations of elasticity known as a rod theory. Since various simplifying assumptions go into
the formulation of a rod theory, there are a number of di�erent approaches depending upon the degree
of approximation desired. The simplest set of equations are those of the Kircho�±Clebsch theory for the
elastica, which is a rod that can be bent and twisted but is inextensible and unshearable. A more
complicated approach allows the elements of the rod to undergo extensional and transverse shear
deformations. A detailed discussion of the origin of various rod theories and the assumptions behind
their approximations can be found in Antman (1995).

The choice of which rod theory to use depends upon the problem under consideration. When the
strains due to the tangential and transverse forces acting on the material element are all `small'
compared to those due to bending and twisting, and plane cross sections remain perpendicular to the
centreline of the beam, the elastica model is often accurate enough. However, when these assumption
are violated, the shear and extensional deformations may be important in the modelling and a more
complex model is appropriate. This is conjectured to be the case for the elastic rod at the lift-o�
condition shown in Fig. 1(d). The small curvature of the loop relative to the rod radius and the large
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tensile and shear forces produce strains which are signi®cant with respect to those due to bending and
twisting alone, while plane sections of the rod do not remain perpendicular to the centreline of the rod.
The incorporation of these e�ects is important to improve the accuracy of the results.

In order to obtain an integrable system of equations, the rod is assumed to be linear elastic and to
have a circular cross-section of radius a. The natural state of the rod is taken as a straight cylinder.
Throughout this study dimensionless quantities de®ned in Eq. (5) below are employed. The
characteristic length and the force-like quantity are taken, respectively, as the rod radius a and the
bending rigidity B=EI (I=pa 4/4 is the second moment of area for a circular rod).

2.1. The coordinate systems and governing equations

The shape of the in®nite rod shown in Fig. 1 has a single localised loop which is described in terms of
a Cartesian axes system Oxyz with the unit basis vectors (i, j, k). The location of the origin O is chosen
so that the k axis lies along the line of remote loading and the rod shape is symmetric in the z-
coordinate. The rod is parameterised by an undeformed arc-length coordinate s which is measured from
the point at the top of the deformed loop. Because of symmetry only the half-interval 0 R s <1 needs
to be considered. The location in space of points along the central axis of the rod is described by the
position vector r(s ).

A�xed to each material element in the reference con®guration is a system of unit vectors (d1, d2, d3)
which change orientation with the deformation of the material. The unit vector d3 points in the directon
perpendicular to the cross section of the rod, and the vectors (d1, d2) span the cross-sectional plane, see
Fig. 2. Because only a circular cross-section rod fashioned from a uniform material is considered here,
the initial choice for the orientation of (d1, d2) is arbitrary. (This would not be the case in a rod with
nonisotropic cross-sectional properties.) The presence of shear strains between the material elements
along the rod means that the vector d3 does not point in the direction tangent to the path of the
centreline path r(s ).

2.1.1. The equilibrium equations
The forces and moments acting through the center of the rod cross section, shown in Fig. 2, are

Fig. 2. A schematic drawing of a rod cross section showing the material vector system (d1, d2, d3), the tangent to the centre line r ',
along with the force and moment vectors n and m.
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described by the vectors n and m, respectively (in the notation of Champneys et al., 1997). These vectors
can be expressed in either the material or Cartesian vector systems by:

n � n1d1 � n2d2 � n3d3 � nxi� nyj� nzk

m � m1d1 �m2d2 �m3d3 � mxi�myj�mzk,

where the subscripts (1, 2, 3) are used to denote quantities projected in the material coordinate system at
a particular point along the rod; and the subscripts (x, y, z ) denote the components of the same vector
projected in the Cartesian coordinate system. The forces (n1, n2) are shear forces, and n3 is a tensile
force. The moments (m1, m2) are bending moments, and m3 is a twisting moment.

The enforcement of translational and rotational moment equilibrium of the elements of the rod,
which is free from any lateral applied loads or couples, gives the two vector equations,

n 0 � 0, �1a�

m 0 � r 0 ^ n � 0: �1b�

2.1.2. The kinematics
The deformation of the rod is described in terms of the curvature vector u and the strain vector v,

both of which can also be projected into either set of coordinates. The components (u1, u2) are bending
curvatures, and u3 is a twisting curvature. Similarly, the strain vector components (v1, v2) are transverse
shear strains, and v3 is a tangential strain.

The evolution of the material vector system along the rod is expressed by the vector equations
di
0 � u ^ di, where i=(1, 2, 3) and the notation () ' denotes di�erentiation with respect to the coordinate

s. When written out, these three vector equations have the form:

d1
0 � u3d2 ÿ u2d3, d2

0 � u1d3 ÿ u3d1, d3
0 � u2d1 ÿ u1d2: �2�

The position vector r is related to the strain vector v and d3 by the formula,

r 0 � v� d3: �3�
Once u and v have been determined along the rod, the material vectors di and the shape vector r are

found from Eqs. (2) and (3).

2.1.3. The constitutive laws
The speci®cation of the governing equations is completed with constitutive laws which relate the

moments m with the curvatures u and the forces n with the strains v. In vector dyadic notation, these
relationships are given by:

n � �Cd1d1 � Cd2d2 �Dd3d3� � v, �4a�

m � �d1d1 � d2d2 � Kd3d3� � u, �4b�
where K, D, and C are, respectively, the dimensionless torsional, extensional, and shear rigidities de®ned
in Eq. (5). It is worth noting that since the bending rigidity B=EI has been used in the
nondimensionalisation, the modulus drops out of the ®rst two terms on the right side of Eq. (4b). In
terms of dimensional quantities (denoted by an overbar), �K � GJ and �D � EA where G is the shear
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modulus, J=pa 2/2 is the polar moment of inertia and A=pa 2 is the cross-sectional area. The modulus
�C � q �D is an approximation (Fung, 1965) which depends upon the cross-sectional shape. For a circular
rod, the value q = 5/6 is often used. An inextensible and unshearable rod theory is obtained from the
limit (D,C ) 41, in which case, n is found from equilibrium considerations; the inversion of Eq. (4a)
gives v=0; and Eq. (3) becomes r '=d3.

It should be pointed out that no account of the e�ects of changes in the cross-sectional dimensions on
the constitutive relations of the rod is included in this formulation. Similarly, warping is neglected so
that plane sections of the rod are assumed to remain plane, but not perpendicular, to the centre line.

2.1.4. The dimensionless variables
The complete set of equations for the eight dimensionless vector quantities (r, u, v, n, m, d1, d2, d3) is

given by Eqs. (1±4). Following the analysis of Fraser and Stump (1998), the various dimensionless
quantities used in the analysis are related to the physical (barred) quantities by the formulae:

s � �s

a
, r � År

a
, m � Åma

B
, n � Åna2

B
,

u � Åua, K �
�K

B
, D �

�Da2

B
, C �

�Ca2

B
,

9>>>=>>>; �5�

The strain vector v is dimensionless by de®nition. It is important to note that in this normalisation
scheme, the values of the elastic constants for a circular rod are given by the O(1) quantities:

K � 1

1� n
, D � 4, C � q4:

The magnitude of the force and moment vectors n and m are typically much smaller than O(1) so that
the strains within the rod elements do not exceed the material's elastic limit.

This normalisation scheme is di�erent from that used by other studies (e.g. Champneys et al., 1997)
where the magnitudes of the dimensionless n and m are both O(1). That approach leads to dimensionless
shear and extensional rigidities which are much smaller than the dimensionless bending and torsional
rigidities. The results of either normalisation scheme can be shown to be equivalent.

2.2. Euler angles and boundary conditions

In order to integrate the governing equations Eqs. (1±4), a suitable set of boundary conditions is
necessary. In terms of the global Cartesian vector system aligned so that the k-axis points along the line
of remote applied loading, the remote conditions as s41 are:

r0
�
1� T1

D

�
sk, d30k, n0T1k, m0Q1k: �6�

The remote values of u and v are obtained from the constitutive laws (Eqs. (4a) and (4b)).
The governing equations are most naturally integrated in terms of their components in the material

vector system (d1, d2, d3) while the boundary conditions are expressed in terms of the global Cartesian
system (i, j, k). The connection between the two vector systems is provided by the Euler angles (y, f, c )
which are functions of the material coordinate s.

In the notation of Landau and Lifshitz (1963) [p. 110], Fig. 3 shows the de®nitions of the angles (y, f,
c ) in relation to the two sets of orthogonal axes. A geometrical analysis of Fig. 3 leads to the
trigonometric formulae:
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d1 � �cos c cos fÿ sin c cos y sin f�i� �cos c sin f� sin c cos y cos f�j� sin c sin yk,

d2 � ÿ�sin c cos f� cos c cos y sin f�i� �ÿsin c sin f� cos c cos y cos f�j� cos c sin yk,

d3 � sin y sin fiÿ sin y cos fj� cos yk, �7�
connecting the two systems of basis vectors. By projecting the rates of rotation of the Euler angles (y ',
f ', c ') along the axes (d1, d2, d3) and using the evolution equations Eq. (2), it is straightforward to
relate the components of the curvature vector u to the derivatives (y ', f ', c ') via

y 0 � u1 cos cÿ u2 sin c, �8a�

f 0 � u1 sin c� u2 cos c
sin y

, �8b�

c 0 � u3 ÿ f 0 cos y: �8c�
Once the compenents of u have been found, these equations can, in principle, be integrated to obtain

the Euler angles as a function of position along the rod. However, as is shown below, an alternative
approach provides the angles y and c directly without the need to integrate Eqs. (8a) and (8c). The
angle f is obtained from a trivial integration of Eq. (8b). Care needs to be exercised in the use of Eqs.
(8a), (8b) and (8c) for general problems due to the polar singularity in Eq. (8b). A phase plane analysis
is used below to show that the localised solution found here corresponds to a homoclinic orbit that does
not pass through the singularity.

Fig. 3. A schematic drawing showing the relationship between the Cartesian basis vectors (i, j, k) and the material basis vectors (d1,

d2, d3) along with the Euler angles (y, f, c ) and their derivatives.
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3. Integration of the equations

The governing equations are integrated to obtain the various quantities within the rod and to ®nd the
position vector r within the global Cartesian reference axes. The starting point of the analysis is the
equilibrium equations (Eqs. (1a) and (1b)), which are integrated in both the Cartesian and material
vector systems.

3.1. The Cartesian representation

In the Cartesian representation, the integration of Eq. (1a) with the remote boundary conditions gives
the constant vector,

n � nxi� nyj� nzk � T1k: �9�
This expression is inserted into Eq. (1b) which is then integrated to obtain the Cartesian form:

m � mxi�myj�mzk � Q1kÿ r ^ T1k: �10�
These expressions are used below to ®nd the shape of the rod.

3.2. The material vector representation

An alternative integration of the governing equations can be done by expressing the various quantities
in the material vector system (d1, d2, d3). It is straightforward to show that the equilibrium equations
(Eqs. (1a) and (1b)) take the expanded forms:

n1
0d1 � n2

0d2 � n3
0d3 � n1d1

0 � n2d2
0 � n3d3

0 � 0, �11a�

m1
0d1 �m2

0d2 �m3
0d3 �m1d1

0 �m2d2
0 �m3d3

0 � �v1d1 � v2d2 � �1� v3�d3� ^ �n1d1 � n2d2

�n3d3� � 0: �11b�
Use of the de®nitions Eq. (2) for the vector derivatives di

0 and the constitutive relationships,

n1 � Cv1, n2 � Cv2, n3 � Dv3, m1 � u1, m2 � u2, m3 � Ku3 �12�
provided by Eqs. (4a) and (4b) allows Eqs. (11a) and (11b) to be written out as the six equations:

n1
0 � 1

K
m3n2 ÿ n3m2, �13a�

n2
0 � m1n3 ÿ 1

K
m3n1, �13b�

n3
0 � m2n1 ÿm1n2, �13c�

m1
0 �

�
1

K
ÿ 1

�
m3m2 ÿ 1

C
n2n3 � n2

�
1� n3

D

�
, �13d�
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m2
0 �

�
1ÿ 1

K

�
m3m1 � 1

C
n1n3 ÿ n1

�
1� n3

D

�
, �13e�

m3
0 � 0, �13f�

for the components of n and m.

3.2.1. Integration of the equations
The nonlinear equations (Eqs. (13a), (13b), (13c), (13d), (13e) and (13f)) are integrated in conjunction

with the remote boundary conditions (6) as follows:

1. Eq. (13f) is integrated immediately to get

m3 � Q1: �14�
2. The combination of Eqs. (13a), (13b) and (13c) gives

n1n1
0 � n2n2

0 � n3n3
0 � 0,

which is integrated to obtain

n21 � n22 � n23 � T 2
1: �15�

3. The combination of Eqs. (13a), (13b), (13c), (13d), (13e) and (13f) gives

m1n1
0 � n1m1

0 �m2n2
0 � n2m2

0 �m3n3
0 � 0,

which is integrated to get

n1m1 � n2m2 � n3m3 � T1Q1: �16�
4. The combination of Eqs. (13d) and (13e) yields

m1m1
0 �m2m2

0 � ÿn3 0�1ÿ kn3�,
where the constant k is given by

k � Dÿ C

DC
:

(Under this normalisation scheme, k01/20 for a circular cross-section rod with q = 5/6.) This
equation is integrated to obtain

1

2
m2

1 �
1

2
m2

2 � �T1 ÿ n3� ÿ k

2

ÿ
T 2
1 ÿ n23

�
: �17�

5. The combination of Eqs. (13a) and (13b) gives

n2n1
0 ÿ n1n2

0 � 1

K
m3

ÿ
n21 � n22

�ÿ n3�m1n1 �m2n2�:

This expression is divided by n21 � n22 and use is made of Eqs. (14)±(16) to obtain the di�erential
equation,
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ÿ
�

tanÿ1
�
n2
n1

��
0 � Q1

K
ÿ Q1n3

T1 � n3
: �18�

6. The system of equations has now been reduced to Eqs. (14)±(17) and the two di�erential equations
Eqs. (13c) and (18). The introduction of the auxiliary variables (r, g, r, a ) de®ned by:

n1 � r cos g, n2 � r sin g, m1 � r cos a and m2 � r sin a,

allows the set of equations to be transformed into

m3 � Q1, �19a�

r2 � n23 � T 2
1, �19b�

rr cos�gÿ a� � n3Q1 � T1Q1, �19c�

r2

2
� �T1 ÿ n3� ÿ k

2

ÿ
T 2
1 ÿ n23

�
, �19d�

g 0 � ÿQ1
K
� Q1n3

T1 � n3
, �19e�

n3
0 � ÿrr sin�gÿ a�: �19f�

7. An equation for n3 is obtained by combining Eqs. (19c) and (19f) to get

r2r2 � ÿn3 0�2��T1 ÿ n3�2Q2
1,

and also by combining Eqs. (19b) and (19d) to yield

r2r2 � ÿT 2
1 ÿ n23

��
2�T1 ÿ n3� ÿ k

ÿ
T 2
1 ÿ n23

��
:

These expressions are equated and simpli®ed to provide the ®rst order di�erential equation for n3,

n3
0 � �T1 ÿ n3�

h
2�T1 � n3� ÿ k�T1 � n3�2 ÿQ2

1
i1=2

: �20�

where the positive square root has been taken since for sr0, n3 is a monotonically increasing
function. Eq. (20) is integrated in the Appendix and is given by the closed-form expression:

n3 � T1 ÿ
����
D
p

e
��
c
p

s

1

4c
� ����Dp e

��
c
p

s ÿ b�2 � k

, �21�

where the terms b and c represent the variable combinations,

b � ÿ2�1ÿ 2kT1�; c � 4T1 ÿQ2
1 ÿ 4kT 2

1, and D � b2 � L=kc:

The value of b R ÿ2, and it is expected that cr0 for the values T1R O(1), which are reasonable
under this normalisation.

8. Eq. (21) is inserted into Eq. (19e) which is factored into the di�erential equation
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g 0 � Q1

�
1

2
ÿ 1

k

�
ÿ Q1

����
D
p

e
��
c
p

s

T1
c
� ����

D
p

e
��
c
p

s ÿ b�2 � 4kT1 ÿ 2
����
D
p

e
��
c
p

s

: �22�

This equation is integrated (Gradstyn and Ryzhik, 1965) to obtain

g 0 � Q1

�
1

2
ÿ 1

k

�
sÿ Q1�������������������������������

16k2T 21 �Q21
p tanÿ1

"
�b � 2a

����
D
p ��e

��
c
p

s ÿ 1� ����
L
p

L� �b � 2a
����
D
p �2e ��

c
p

s

#
, �23�

where

a � T1
c

, b � ÿ2
�
1� T1b

c

�
, and L � 16T1

c
�1� 3kT1� ÿ 4:

In general it is expected that b R 0 since, for k01/20, b R 0 for values of T1R 6.667, which
includes all practical cases.

The integration of Eqs. (13a), (13b), (13c), (13d), (13e) and (13f) is now complete and the components
of n and m are found by back substitution.

3.3. The Euler angles

The three Euler angles (y, f, c ) are now calculated. The force vector n given by Eq. (9) has the two
equivalent representations,

n � r cos gd1 � r sin gd2 � n3d3 � T1k, �24�
where the auxiliary variables (r, g ) have been used in place of (n1, n2). The formation of successive dot
products of Eq. (24) with each of the basis vectors (d1, d2, d3) and use of Eq. (7) gives:

r cos g � T1 sin c sin y, r sin g � T1 cos c sin y, n3 � T1 cos y:

This set of equations yields formulae for the two Euler angles y and c,

y � cosÿ1
�

n3
T1

�
�25a�

c � p
2
ÿ g, �25b�

without the need to integrate Eqs. (8a) and (8c). The angle f is determined by using the results for c
and y and the constitutive relations Eq. (12) to transform (8b) into

f 0 � m1 cos g�m2 sin g������������������
1ÿ n23

T 21

s :

The introduction of the formulae m1=r cos a and m2=r sin a provides
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f 0 � r cos�gÿ a�������������������
1ÿ n23

T 21

s � Q1T1
T1 � n3

,

where the right-most expression has been obtained by using various relations (Eqs. (19a), (19b), (19c),
(19d), (19e) and (19f)). The addition of this expression and Eq. (19e) gives

f 0 � g 0 � Q1

�
1ÿ 1

K

�
,

which is trivially integrated (the constant of integration being set equal to zero) to obtain the formula

f � Q1

�
1ÿ 1

K

�
sÿ g �26�

for the ®nal Euler angle. A check on the solution is provided by taking the limit s 41, in which case,
Eqs. (21) and (23) give

n30T1, g0Q1

�
1

2
ÿ 1

K

�
s,

which leads to the asymptotic Euler angles:

y00, c0Q1

�
1

K
ÿ 1

2

�
s, f0Q1s

2
:

From Fig. 3, it can be seen that as y 4 0, f and c are coplanar and the sum f+c0Q1s/K gives the
total twist about the k-axis. In addition, the asymptotic form of Eq. (8c) provides the rate of twist,

u30c 0 � f 0 � Q1
K

,

which is the correct formula for the rate of twist of a straight rod under the remote torque Q1.

3.4. The tangent and position vectors

The results obtained so far are now used to ®nd the tangent and position vectors as functions of s.

3.4.1. The tangent vector
From Eq. (3) and the constitutive laws Eq. (12), the Cartesian form of the tangent vector can be

expressed as

x 0i� y 0j� z 0k � r
C

cos gd1 � r
C

sin gd2 �
�
1� n3

D

�
d3: �27�

The formation of the scalar product of Eq. (27) with each of (i, j, k) along with the use of Eq. (7),
various trigonometric identities, and c+g=p/2 leads to the component expressions

x 0 � ÿ r
C

cos y sin f�
�
1� n3

D

�
sin y sin f, �28a�
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y 0 � r
C

cos y cos fÿ
�
1� n3

D

�
sin y cos f, �28b�

z 0 � r
C

sin y�
�
1� n3

D

�
cos y: �28c�

In the inextensible and unshearable limit (D,C ) 41, the Eqs. (28a), (28b) and (28c) reduce to

x 0 � sin y sin f; y 0 � ÿsin y cos f; z 0 � cos y,

which agrees with Love (1927) [Chapter 18].

3.4.2. The position vector
The formation of the vector product of k with Eq. (10) and use of the triple vector product leads to

the formula

T1�xi� yj� � myiÿmxj:

The use of the expressions mx=m�i and my=m�j allows this equation to be separted into the
components

x � 1

T1
j � �m1d1 �m2d2 �m3d3�, y � ÿ 1

T1
i � �m1d1 �m2d2 �m3d3�:

The expansion of the dot products according to Eq. (7) and the use of various trigonometric identities
provide the ®nal formulae:

x � r

T1
sin f cos�a� c� � r

T1
cos y cos f sin�a� c� ÿ Q1

T1
sin y cos f, �29a�

y � ÿ r

T1
cos f cos�a� c� � r

T1
cos y sin f sin�a� c� ÿ Q1

T1
sin y sin f: �29b�

The z-component of the position vector must be obtained from the integration of Eq. (28c), which
yields the formula

z �
�
1� T1

D

�
s� 2

���
c
p
T1

 ����
D
p ÿ be

��
c
p

s����
D
p �1� e2

��
c
p

s� ÿ 2be
��
c
p

s
ÿ 1

2

!
: �30�

This completes the solution for the shape of the shearable and extensible rod. It can be shown that in
the inextensible and unshearable limit (C,D ) 41, the analytical expressions obtained here reduce to
the corresponding expressions found by Coyne (1990).

3.5. Phase plane analogy

Since the rod equations are completely integrable, the phase plane constructed for y and y ' is a useful
tool to show that the localised solution found here represents a homoclinic orbit and that the polar
singularity associated with y=0 is avoided. The phase plane is constructed by replacing n3=T1 cos y in
Eq. (21) and then rewriting this equation in the form:
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1

2
y 02 � V�y� � T1 ÿ kT 2

1, �31�

where

V�y� � Q2
1
2

�
1ÿ cos y
1� cos y

�
� T1 cos yÿ kT 2

1
2

cos2y: �32�

The equation of a nonlinear oscillator is found by taking the derivative of Eq. (31) to obtain

y0� @V
@y
� 0,

where the di�erentiation of Eq. (32) provides

@V

@y
� sin y

�1� cos y�2
n
Q2
1T1�1ÿ kT1 cos y��1� cos y�2

o
: �33�

The ®xed points given by the roots of Eq. (33) which are y=0 and solutions to the cubic equation,

Q2
1

T1
� �1ÿ kT1cos y��1� cos y�2: �34�

These represent, respectively, a straight rod and helices. In the inextensible limit k 4 0, Eq. (34)
agrees with the results of Champneys and Thompson (1996). The detailed structure of this system is
currently under further study, but a plot of the phase plane (Fig. 4) for several con®gurations of the
shearable and extensible rod shows that the localised solution is a homoclinic orbit emerging from the
®xed point y=0. Thus, the polar singularity at y=0 is never encountered except at the asymptotic ends
of the orbit.

Fig. 4. A phase plane of y and y ' showing the homoclinic orbits of two localised solutions computed for the values Q1=0.2,

K= 2/3, D= 4, C= 10/3 and the two values T1=0.1158 (solid line) and T1=0.2452 (dashed line). These represent the contact-

ing and lift-o� solutions, respectively.
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4. The contacting and lift-o� solutions

The results of the previous section are now used to calculate the loop sizes as measured by s=L (half
of the undeformed arc-length in the loop) and the tensions T1 associated with the formation of the
contacting and lift-o� solutions for a rod under ®xed remote torque Q1. The two sets of solutions for
these variables are denoted by (Lc, Tc) for the contacting case and (Ll, Tl) for the lift-o� case.

4.1. The equations

There are two conditions that must be enforced to determine L and T1. Since the rod shape for
s R 0 is obtained by rotating the shape for sr0 about the y-axis by 1808, and since the rod material
cannot interpenetrate during contact, then at the instant of contact and lift-o� the rod centreline must
just graze a cylinder of unit radius with the y-axis as generator. This leads to two mathematical
conditions. First, the contact point in the xz-plane must lie on the unit circle

x�L,T1�2 � z�L,T1�2 � 1, �35�
where the dependence of the positions components on L and T1 is noted explicitly. Second, the
projections of the position and tangent vectors in the xz-plane must be perpendicular, that is,

x�L,T1�x 0�L,T1� � z�L,T1�z 0�L,T1� � 0: �36�
Eqs. (35) and (36) are two nonlinear conditions for the determination of s=L and T1 associated with
the contact and lift-o� solutions. These must be solved numerically using a Newton±Raphson method
(Press et al., 1986) for speci®ed values of the elastic constants (K, D, C ) and the remote torque Q1.

4.2. Numerical results

The results of calculations for the inextensible and unshearable model (C,D ) 41 and for the
shearable and extensible model (D = 4, C = 10/3) for an incompressible material K= 2/3 are shown in
Fig. 5.

Fig. 5(a,b) show, respectively, plots of the loop size L and the tension T1 as functions Q1. In both
®gures, the results of the inextensible and unshearable model are given by the solid line, and the results
for the shearable and extensible model are shown by the dashed line. It should be noted that the
continuum of values 0 R k R 0.0503, (the bounding values correspond to the two sets of data used
here) generates a family of curves that are similar in shape to those shown and lie between the two
extreme cases. The ®gures are used to predict the contact and lift-o� solutions in the following way. For
a speci®ed value of Q1, say Q1=0.2, two straight vertical dotted lines are drawn on each plot.
Consider ®rst the inextensible and unshearable model and start with a straight rod subject to torque
Q1=0.2 and tension T1 greater than the Greenhill buckling load. Now start to reduce tension T1. The
rod buckles at the critical value T1=0.01. In order to form the localised solution, immediately begin to
increase T1. At the value T1=0.02, a noncontacting loop is seen when the rod is viewed from the side.
As T1 continues to increase, the vertical line shown on Fig. 5(b) is traversed upwards until the critical
value T1=Tc=0.1127 is reached, where the contacting loop has formed. This is associated with the
upper intersection point Lc=5.54 where the dotted vertical line cuts the upper side of the solid curve on
Fig. 5(a). As T1 is further increased, the vertical line in Fig. 5(b) continues to be traversed upwards
while the loop is being drawn down in size and the vertical line on Fig. 5(b) is descended. Eventually,
the tension reaches the upper intersection point T1=Tl=0.2956 corresponding to the lift-o� condition
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when the loop pulls apart. Simultaneously the loop size Ll=1.66 is given by the lower intersection point
of the vertical line and the solid curve on Fig. 5(a).

The same imaginary loading process describes the formation of the contacting and lift-o� solutions
for the shearable and extensible model shown by the dashed lines. However, the critical value of tension
T1 for the buckling of the shearable rod is found by setting the combination variable c in the formulas
of the previous section equal to zero and solving for T1. This leads to the critical buckling load T1
given by

T1 � 1ÿ �������������������
1ÿ kQ21

p
2k

: �37�

With the introduction of the alternative variables

Fig. 5. (a) A plot of the loop size as measured by the material coordinate s=L for the contacting loops (upper branch) and the

pull apart loops (lower branch) as functions of the applied remote torque Q1. (b) A plot of the remote forces at contact T1=Tc

(lower branch) and for pull apart T1=Tl (upper branch) as functions of the applied remote torque Q1. In both ®gures the solid

lines show the inextensible and unshearable limit (C,D )41 and K= 2/3, while the long dashed lines show the shearable and

extensible model results for (K= 2/3, D= 4 and C= 10/3).
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m � Q1�������
T1
p , ~k � kT1,

Eq. (37) can be transformed into

m � 2
������������
1ÿ ~k

p
,

which agrees with the linear eigenvalue results of Champneys et al. (1997) for the governing equations
(Eqs. (13a), (13b), (13c), (13d), (13e) and (13f)). Once buckling has occurred and the tension is
increased, similar behavior to that discussed above is observed for the formation of contact and lift-o�
solutions of the shearable and extensible model. Along the example line of Q1=0.2 in Fig. 5, the
coordinates of the contact point are Tc=0.1158 and Lc=5.27 and those of the lift-o� point are
Tl=0.2452 and Ll=1.765. The largest percentage di�erences between the two models occurs for the lift-
o� case, which is to be expected since here the additional deformation due to the shear and extension of
the rod are signi®cant. For Q1=0.20 the incorporation of shear and extension e�ects reduces Tl by
about 17%. A comparison of the loop sizes at lift-o� between the two models is not particularly
meaningful since the value Ll describes the material coordinate, which is not the physical arc length for
the extensible model.

There is another interesting aspect to the results shown in Fig. 5(a,b). Both models show a maximum
torque Q1=Qmax beyond which it is not possible to form the contacting solutions. Presumably for
Q1rQmax, the rod is so highly twisted that it cannot displace further than one rod radius away from
the remote loading axis and thus never forms a contacting solution. For the inextensible and
unshearable model, Qmax00.84 while, for the shearable and extensible model, Qmax00.6. These are
both very large levels of Q1, but such a signi®cant reduction in Qmax between the two models is
surprising.

Most problems of practical interest will involve values of Q1R 0.1, in which case, a simple leading-
order asymptotic analysis of L and T1 for the inextensible and unshearable model shows that the
contacting solution (Lc, Tc) is given approximately by:

Lc0
2:55��������
Q1
p , Tc00:555Q1,

while the lift-o� solution (Ll, Tl) is given by the constants

Ll01:654, Tl � 0:2839:

A similar analysis performed for the shearable and extensible model shows comparable results. The
important practical consequence is the result that the loop size at pull apart is essentially independent of
Q1 for all realistic values of Q1. This means that once a loop is formed, it will be virtually impossible
not to hockle the cable if the tension is increased monotonically and the loop is drawn down in size.
The small size of all the lift-o� solutions means that reducing the remote torque Q1 prior to drawing
down the loop has little e�ect on the ®nal radius of curvature when the loop is pulled out.

5. Concluding remarks

A new closed-form localised solution for the linear elastic, circular cross-section rod subject to
bending, twist, shear, and extensional deformations has been found and agrees with the solution
obtained by Coyne (1990) in the inextensible and unshearable limit.
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These results are used to predict the contacting and lift-o� loops that form in a long rod loaded under
remote tension T1 and torque Q1. The size of the loop at pull out is essentially independent of Q1
which means that reducing the remote torque in an attempt to avoid hockling the cable as the tension is
increased is unlikely to succeed. The incorporation of shear and extensional deformations in the model
modify the small lift-o� loop results of the inextensible and unshearable model by about 15%, but do
not e�ect signi®cantly the results for the formation of the contacting loop.

The predicted pull apart loops are very small in size (on the order of four rod radii in length of the
undeformed arc-length coordinate) and it is questionable whether any rod theory adequately describes
such a large deformation three-dimensional problem. It is felt that the utility of this solution is that it
captures the basic trends of results on samples in a small loading rig, and that the closed form nature of
the solution allows further exploration of the mathematical features. The development of the solution
has also demonstrated how to combine the global Cartesian vector and material vector methods of
analysis.
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Appendix. The integration of the n3-equation

The equation for the component n3 along the rod is obtained as follows. First, Eq. (20) is integrated
to get�

dn3

�T1 ÿ n3�
������������������������������������������������������������������
2�T1 � n3� ÿ k�T1 � n3� ÿQ21�

p � s� c0,

where c0 is a constant of integration. Next, the variable change

1

t
� T1 ÿ n3;

dt

t2
� dn3

is made so that the integral is transformed into�
dt������������������������

ct2 � btÿ k
p � s� c0,

where the combinations b and c are given by

b � ÿ2�1ÿ 2kT1� and c � 4T1 ÿQ2
1 ÿ 4kT 2

1:

Since it is expected that b R 0 and cr0, this integral can be evaluated by standard means (Gradstyn
and Ryzhik, 1965) to obtain���

c
p

log
�
2
���
c
p �ct2 � btÿ k�1=2 � 2ct� b

	
� s� c0:
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This expression is solved for t and the constant c0 is chosen so that n13�0� � 0, which yields the ®nal
result Eq. (21). In the inextensible and unshearable limit (C,D ) 41, the expression for n3 Eq. (21)
reduces to

n3 � T1 ÿ 1

2

ÿ
4T1 ÿQ2

1
�
sech2

�
s

2

�����������������������
4T1 ÿQ21

q �
,

which agrees with the Coyne (1990) solution.
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